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Abstract. We study the ground state of theU = ∞ one-band SU(N) Hubbard model on a
square lattice in the leading order of a 1/N expansion using a Baym–Kadanoff expansion and
the X-operator formulation. We find that the homogeneous paramagnetic solution can become
unstable against phase separation due to next-nearest-neighbour hopping.

Since the discovery of high-Tc superconductors [1] there has been renewed interest in the
investigation of strongly correlated Fermi systems. The two-dimensional one-band Hubbard
model [2, 3], as one of the simplest models, has been suggested [4] to be a good starting point
for a description of correlations in the CuO planes of cuprate-based high-Tc superconductors.
Several approximations have been used to study its behaviour for small, intermediate and
large values of the Hubbard repulsionU [5]. Here we restrict our calculations to theU = ∞
limit of the Hubbard model. Moreover, in order to use controlled expansions, we consider
the limit of large spin degeneracyN , which allows an expansion in the small parameter
1/N . Calculations have already been carried out for the caseU = ∞, using the slave-boson
(SB) method [6] and alternatively theX-operator technique [7]. ForN = ∞ one gets a
paramagnetic solution. One important topic of recent research is the investigation of phase
separation [8, 9] in various models. For theU = ∞ one-band Hubbard model, considered
here, Kotliar and Liu [6] have shown that forN → ∞ the homogeneous paramagnetic phase
is stable against phase separation for all fillings. Doing this, they restricted themselves to
nearest-neighbour (NN) hopping only. So one should ask whether this stability is a special
feature of this restriction, corresponding to a symmetric form of the density of states in the
uncorrelated system. As an example in which the density of states is no longer symmetric
one can consider an additional next-nearest-neighbour (NNN) hopping. Moreover the latter
is important, in order to make possible the description of the Fermi surface of the CuO
layers in some compounds by a simple tight-binding model [10–13].

In this work we will show that forN → ∞ the homogeneous paramagnetic solution
may become unstable against phase separation [14] even for an infinitesimal amplitude of
the NNN hopping matrix element. To this end we use theX-operator [16] formulation and
the Baym–Kadanoff perturbation expansion [7, 17] to determine the single-particle Green’s
function (GF).

The Hamiltonian under consideration has the form

H =
∑

p=1,N
i

EipX
pp

i +
∑

p=1,N
ij

tij

N
X

p0
i X

0p

j (1)

wherei stands for the lattice site, andEip for atomic energies;p = 0 denotes the unoccupied
andp = 1, . . . , N the singly occupied orbitals with spin indexp. We thus have extended
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the original SU(2) model with two spin states to an SU(N) model withN spin states. The
Hubbard operatorsXpq

i with p = 0, q = 0 or p > 0, q > 0 have bosonic character whereas
the operators withp = 0, q > 0 or p > 0, q = 0 have fermionic character. They obey the
following commutation and anticommutation rules, respectively:

[Xpq

i , Xrs
j ]∓ = δij (δqrX

ps

i ∓ δspX
rq

i ). (2)

The first term in equation (1) describes isolated atoms, the second one the hopping
between atoms with matrix elementstij . The scaling factorN has been introduced, so the
limit N → ∞ is non-trivial, i.e. atomic and kinetic energy are of the same order inN . The
X-operators act within a Hilbert space defined by the constraint [18]

p=N∑
p=0

X
pp

i = N

2
(3)

which is equivalent to that usually used in slave-boson formulations of the problem [6].
We use the notationXp1q1

i1
(τ1) ≡ X(1) and add a source termHs to the Hamiltonian to

define single-particle nonequilibrium thermal Green’s functions:

G(11′) = 〈〈X(1)X†(1′)〉〉 = −〈T SX(1)X†(1′)〉
〈S〉 . (4)

Here,X(1) andX(1′) are fermionicX-operators in the Heisenberg representation,〈. . .〉 is
the thermal average,T the imaginary-time ordering operator and

S = T exp

(
−

∫ β

0
dτ1 Hs(τ1)

)
. (5)

The source term has the form

Hs(τ1) = −
∫

d2 δ(τ2 − τ1) X(2)K(2) (6)

where sourcesK are introduced with respect to bosonicX-operators only. Writing down
the equation of motion for the single-particle GFs one gets higher-order GFs, which can
be expressed in terms of appropriate functional derivatives of the single-particle GFs with
respect to the sourceK [7, 17]. In addition, one can express the GFs appearing in the
equation of motion in terms of the self-energy6 and express6 in terms of functional
derivatives [7, 17]. On this basis it is possible to carry out a controlled 1/N expansion
for G, 6 and the expectation values of bosonicX-operators [19–21]. In the leading order,
i.e. for N → ∞, the self-energy is frequency independent, so one obtains an effective
uncorrelated band with a dispersion determined by a renormalization of the hopping term
and a shift of the atomic energy as given below; see equation (10).

Searching for instability against phase separation one has to determine the chemical
potentialµ as a function of the mean occupation numberN0,

N0 =
p=N∑
p=1

i

〈Xpp

i 〉. (7)

Restricting oneself to the case whereT = 0, one can use the relation

∂〈H 〉
∂N0

= µ. (8)

Inserting the Hamiltonian (1) we obtain

〈H 〉 = 1
∑

k

t (k)2(µ − ε(k)) (9)
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for the leading order in the 1/N expansion. Here we have set the atomic energies equal
to zero;ε(k) denotes the renormalized single-particle energies which are spin independent
and given by

ε(k) = λ + 1

N
t(k) (10)

with the shift of the atomic energy

λ = − 1

Ns

∑
k′

t (k′)2(µ − ε(k′)) (11)

and the renormalization factor1 = 〈X00
i 〉, where the homogeneous case is assumed. Above,

t (k) is the Fourier transform oftij , Ns is the number of sites and2 the step function. Using
the constraint (3) one has

1

N
≡ α = 1

2
− N0

NsN
. (12)

Note that all values have to be calculated in their leading order, e.g.〈X00〉 in O(N) andλ in
O(1). Not paying attention to this would lead to a mixing of different orders in 1/N . The
above equations (9)–(12) agree with those as obtained forN → ∞ in the well-established
SB treatment [6].

Figure 1. The critical densitync per spin degree of freedom as a function of the NNN hopping
amplitudet ′/t for t > 0 according to equation (18). Fornc the l.h.s. of (15) is zero, i.e., the
inverse compressibility diverges.

On introducing

y = (µ − λ)/α (13)

equation (8) becomes

µ = λ − α2

Ns

∑
k

t (k) δ(ε(k) − µ)
∂y

∂α
. (14)



2854 L Gehlhoff

Stability against phase separation requires

∂µ

∂np

> 0 (15)

in which np is the density per spin, related toN0 (equation (7)) byN0 = NsNnp in the
homogeneous paramagnetic case. Inserting equation (14) into the relation (15) leads to

1 − 2y

α
n(0)

p (y) > 0 (16)

as a condition for the stability of the homogeneous solution with the energy dispersion
according to equations (10) and (11). In equation (16),n(0)

p is the unperturbed density of
states per spin direction, i.e., calculated withλ = 0, 1/N ≡ α = 1 in equation (10);α is
determined via equations (12) and (7) by〈Xpp〉. Note that because of the constraint (3)
some projection properties of theX-operators, e.g.X00

i X00
i = X00

i , get lost [20]. As a result,
relations such asXpq

i = X
p0
i X

0q

i which are usually used to express expectation values of
bosonicX-operators in terms of Green’s functions as, e.g.,〈Xpp

i 〉 = −〈T X
0p

i (τ )X
†0p

i (τ+)〉,
are no longer valid. The latter relation has to be replaced by a more complicated one; the
derivation for arbitrary temperature is, even for the leading order, a bit cumbersome [20].
However, restricting oneself to the case whereT = 0, one can determine the densitynp per
spin degree of freedom via equation (8), leading to

np =
∫ y

−∞
dε n(0)

p (ε). (17)

Let us show now that the condition (16) no longer needs to be fulfilled for all densities if
a NNN hopping is included intij . Considering NN hopping exclusively, one finds that an
instability can occur only for a density per spinnp = 0.5, i.e.,

p=N∑
p=1

〈Xpp

i 〉 = N/2.

Thus in this case no phase separation can occur due to the constraint (3). Permitting NNN
hopping, one can get somenp(y = 0) < 0.5, leading to an instability withy > 0 and
np(y) < 0.5. This follows from

α = 1

2
− np = 1

2
−

∫ y

−∞
dε n(0)

p (ε)

and the positivity of the unperturbed density of states,n(0)
p (ε). Note that due to the inclusion

of the NNN hopping,n(0)
p (ε) is no longer symmetric and∫ 0

−∞
dε n(0)

p (ε) >
< 0.5

becomes possible, depending on the sign of the NNN hopping amplitude. To fix the ideas
we considered the energy dispersion

t (k) = 2t [cos(kx) + cos(ky)] − 4t ′[cos(kx) cos(ky)] (18)

in which the lattice spacing is set to unity. We solved equations (16) and (17) numerically to
determine the critical densitync per spin for which the l.h.s. of the relation (16) is zero, i.e.,
the inverse compressibility diverges [22]. Figure 1 shows this critical density as a function
of the NNN hopping amplitudet ′ (t ′, t > 0), for which the physically relevant parameter
range is chosen according to [10, 12]. Due to the constraintnp 6 0.5, only positive ratios
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t ′/t of both hopping amplitudes lead to an instability fort > 0, corresponding to the hole
picture. In contrast, for the electron picture in whicht < 0, an instability occurs only for
t ′/t < 0.

The hole picture of the model with infinite Coulomb interactionU , considered here,
implies the exclusion of double occupancy of theholesfor N = 2. Thus in the hole picture
only electron doping with respect to the half-filled model is possible. Ift ′/t > 0, i.e., phase
separation can occur, the form of the Fermi surface for theN → ∞ result of our model
agrees qualitatively with that experimentally found for electron-doped Nd2−xCexCuO4

[13, 24].
To explain why in the case with inclusion of NNN hopping phase separation can occur

whereas in the NN hopping case this is not possible, one has to look at equation (16).
This equation shows that the filling-dependent shiftλ of the single-particle energies plays
an important role, because it determines the value ofy = (µ − λ)/α. In the case of NN
hopping only and putting the unrenormalized atomic energy to zero,µ < λ holds in the
less-than-half-filled case; thusy < 0.

This picture changes if NNN hopping is switched on. Because the band is not symmetric
(with respect to the functionn(0)

p (ε)), one can haveµ > λ in the half-filled case, i.e., the
chemical potential lies above the renormalized atomic energy. This is the main difference
between the two cases, with and without NNN hopping, and leads to the possibility of phase
separation in the former case. One should note that for theU = ∞ one-band Hubbard model
in the limit N → ∞ neither magnetic phases nor superconductivity occur [20]; thus the
instability of the homogeneous paramagnetic solution against phase separation, discussed
here, is the only one. This can change if a Heisenberg (J -) term is introduced into the
Hamiltonian, i.e., thet–J -model is considered instead of thet-model (i.e., theU = ∞
model).

Grilli, Castellani and Kotliar [26] have investigated thet–J -model in the large-N
limit using a decoupling for the magnetic part and considering NN hopping only. They
find phase separation for zeroJ only in the half-filled case. This is in agreement with
results of numerical investigations as well as analytical considerations [15]. Psaltakis and
Papanicolaou [27] have considered an additional NNN hopping in thet–J -model (i.e.,
the t–t ′–J -model) finding phase separation for zeroJ . They used a 1/N approach, too;
however, they altered the commutation relations of the Hubbard operators in anuncontrolled
way. Deeg and Fehske [28] have considered thet–t ′–J -model finding phase separation for
J = 0, t ′ = 0 only for the half-filled case, whereas for the cases wheret ′ = 0, J 6= 0 and
t ′ 6= 0, J 6= 0 that were also investigated phase separation occurs for a less-than-half-filled
system. The case whereJ = 0, t ′ 6= 0 has not been considered explicitly. The method
that the authors used is theN = 2 saddle-point approximation of the slave-boson functional
integral representation for the partition function. It should be emphasized that forN = 2
this approximation is not controlled by a small parameter; thus it does not correspond to the
saddle-point solution in the large-N case, which becomes exact forN → ∞. In contrast
to the former results we get phase separation within an controlled expansion even in the
absence of a Heisenberg (J -) term.

In conclusion, we have shown that even for the simple two-dimensionalU = ∞ one-
band Hubbard model (i.e., thet–J -model with zeroJ ) in the limit N → ∞ phase separation
can occur, which usually is thought to require more complicated models with additional
short-range interactions [29] such as, e.g., a Heisenberg (J -) term. In the model considered
here we find, using parameters from band-structure calculations, that only the electron-
doped and not the hole-doped system can become unstable against phase separation near
half-filling.
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